DOE是一款强大的研发工具,是世界500强企业研发人员必修课程。它是一门科学,是研究如何合理而有效地组织试验, 并运用更为科学的分析工具对试验结果的数据进行处理, 取得最佳方案的一种方法,它可以把客户的需求转换成我们的设计需求、工艺需求和生产需求,它可以缩短产品的研发周期,帮助研发工程师从最开始就对产品的质量和成本进行最优化设计,而且可把产品工艺和使用因素都考虑周全,从而设计出先天性健壮产品,使新产品尽快投放市场。
DOE也是一种高级质量工具,在日本不懂DOE(试验设计)的工程师只能算是半个工程师。它可以帮助质量、工艺和技术人员识别关键过程变量,完善参数设定,控制参数的调整限度,制定标准操作程序,减小过程的波动,减少转产时间,适应不断变化的客户需求,提高产品的首次合格率,增加产能,缩短过程调试时间,排除制程中的故障,有效获取对过程的理解,改进产品的稳定性,使流程更加稳定。
研发总监、经理、工程师;技术总监、经理、工程师、技术员;质量总监、经理、工程师;产品流程总监、经理、工程师、技术员;以及加强六西格玛绿带、黑带、黑带大师对DOE的认识、理解和运用。
学员需配合电脑(分组)学习。
3天
1、 掌握如何运用DOE为产品原料选择最合理的配方;
2、 为生产过程选择最合理的工艺参数;
3、 缩短新产品之开发认证周期;
4、 寻找问题的根本原因;
5、 解决那些久经未决的“顽固”品质问题;
6、 提高现有产品的产量和质量;
7、 为新的或现有生产检测设备选择最合理的参数 ;
8、 掌握DOE的基本概念和原理,深刻理解DOE的逻辑;
9、 掌握全因子试验设计、部分因子试验设计、筛选试验设计,响应曲面设计和混料试验设计;
10、 掌握如何应用筛选试验从众多影响因素中筛选找出影响输出的主要因素,以最少的投入换取最大的收益;
11、 掌握如何对因子水平优化得到最佳输出,从而使产品质量得以提升,工艺流程最优化;
12、 训练科学地、系统地和统计的分析思维习惯;
13、 学习科学合理地安排试验,减少试验次数、缩短试验周期,提高经济效益;
14、 掌握如何应用MINITAB软件进行试验设计、数据分析、因子优化和输出预测。
第一章 经典试验设计
第一节 统计基础
一. 波动的理解
二. 波动的度量
三. 总体与抽样
四. 正态分布
第二节 试验设计引言
一. 什么是试验设计
二. 试验设计的发展过程
三. 试验设计的运用
四. 试验练习
第三节 试验设计的基础
一. 基本术语
二. 现实的多样性
三. 试验误差
四. 统计试验设计
五. 试验设计的步骤
六. 基本逻辑
第四节 几何与统计
一. 试验设计的基本逻辑
二. 二水平因子设计
1. 22的全因子试验设计
2. 23的全因子试验设计
三. 多因子的全因子试验设计矩阵
四. 23的全因子试验设计数据
五. 计算效应
1. A和B的交互作用
2. A*B*C三阶交互作用
六. 23部分因子试验设计及其平衡性
七. 因子数较多时的设计
第五节 全因子试验设计的例子
一. 增加中心点-发现弯曲
二. 23全因子试验设计的立方图
三. Minitab简介
四. Minitab全因子试验设计
第六节 全因子试验设计的分析
一. 23立方图的响应变量数据
二. 全因子试验设计的Minitab分析
三. 全因子试验设计的本公司实例模拟练习
第七节 试验设计的步骤
一. 定义问题
二. 选择响应变量
三. 验证测量系统
四. 选择因子
五. 选择试验设计
六. 应对试验误差
七. 创建试验方案
八. 实施试验
九. 分析数据,验证结果
十. 提出报告
一. 贯彻改进方案
第八节 筛选试验设计
一. 筛选试验设计的基本逻辑
二. 筛选试验设计的特点
三. 筛选试验设计的类别
四. Plackett-Burman试验设计
1. 12轮的PLACKETT-BURMAN试验设计
2. 12轮P-B设计的平衡性
五. 23的全因子试验设计平衡矩阵无混杂
六. Plackett-Burman试验设计的运用
七. 部分因子试验设计
1. 23部分因子试验设计
2. 二水平四因子部分因子试验设计 24-1
八. 分辨度
九. 试验设计的分辩度与运行次数
第九节 筛选试验设计的例子.
一. 筛选试验设计实例
二. 计算试验运行的次数
三. 筛选试验设计的Minitab生成
四. 筛选试验设计的Minitab分析
五. 筛选试验设计的计划制定
六. 筛选试验设计的实战模拟练习
第十节 响应曲面设计
一. 试验设计的基本逻辑
二. 响应曲面设计介绍
1. 曲线拟合
2. 二次多项式
3. 响应曲面设计的基本运行次数
4. 计算响应曲面设计的运行次数
三. 试验区域的形状
1. 三因子的FCC试验设计
2. 三因子的中心复合序贯设计
3. 三因子的中心复合有界设计
4. 三因子的BOX- Behnken试验设计
四. 响应曲面设计的运用
五. 处理试验误差
六. 调整无法进行试验的区域
七. 不规则试验区
第十一节 响应曲面设计的例子
一. 响应曲面实例
二. 响应曲面设计的Minitab生成
三. 响应曲面设计的Minitab分析
四. 响应曲面设计的实战模拟练习
第十二节 混料试验设计
一. 混料试验设计的原理
二. 混料试验设计实战模拟练习
第二章 田口试验设计
第一节 田口试验设计的介绍
一. 田口方法简介
二. 田口试验设计的模型
三. 静态参数设计和动态参数设计
四. 减少响应变量的变差
第二节 静态参数设计实例
一. 问题描述
二. 质量特性
三. 理想机能
1. 望目型
2. 望小型
3. 望大型
四. 可控因子
五. 可控因子的水平
六. 噪声因子
七. 试验设计正交表
八. 田口试验静态参数设计的步骤
九. 田口试验设计之Minitab运用
1. 陈述实际问题
2. 制定可控因子水平表
3. 制定控制表(或称为内表)
4. 制定误差因子水平表
5. 制定噪声表(或外表)
1) 乘积法
2) 综合误差法
3) 最不利综合误差法
6. 实施试验
7. 得出实际结论
1) 统计分析
2) 图表分析
3) 可控因子的分類
4) 制程优化
5) 确认
8. 贯彻改进方案
第三节 动态参数设计实例
一. 陈述实际问题
二. 质量特性和理想机能
三. 制定信号因子
四. 制定可控因子水平表
五. 制定内表
六. 制定误差因子水平表和外表
七. 实施试验
八. 得出实际结论
1. 信噪比的模型系数估计
2. 响应表
3. 主效应图
4. 残差图
5. 可控因子分类
6. 制程优化
九. 贯彻改进方案
培训总结与答疑